Сталь конструкционная углеродистая качественная | ||||
05кп | 08 | 08кп | 08пс | 08Фкп |
08Ю | 10 | 10кп | 10пс | 11кп |
12к | 15 | 15К | 15кп | 15пс |
16К | 18К | 18кп | 20 | 20К |
20кп | 20пс | 22К | 25 | 30 |
35 | 40 | 45 | 50 | 55 |
58 | 60 | ОсВ |
Сталь конструкционная углеродистая обыкновенного качества | ||||
ВСт2кп | ВСт2пс | ВСт2сп | ВСт3Гпс | ВСт3кп |
ВСт3пс | ВСт3сп | ВСт4кп | ВСт4пс | ВСт5пс |
ВСт5сп | ВСт6пс | ВСт6сп | Ст0 | Ст1 |
Ст1кп | Ст1пс | Ст1сп | Ст2кп | Ст2пс |
Ст2сп | Ст3Гпс | Ст3Гсп | Ст3кп | Ст3пс |
Ст3сп | Ст4кп | Ст4пс | Ст4сп | Ст5Гпс |
Ст5пс | Ст5сп | Ст6пс | Ст6сп |
Сталь конструкционная легированная | ||||
10Г2 | 10Х2М | 12Г2 | 12Х2Н4А | 12ХН |
12ХН2 | 12ХН2А | 12ХН3А | 14Х2ГМР | 14Х2Н3МА |
14ХГН | 15Г | 15Н2М | 15Х | 15ХА |
15ХГН2ТА | 15ХФ | 16Г2 | 16ХСН | 18Х2Н4ВА |
18Х2Н4МА | 18ХГ | 18ХГТ | 19ХГН | 20Г |
20Г2 | 20Н2М | 20Х | 20Х2Н4А | 20ХГНМ |
20ХГНР | 20ХГНТР | 20ХГР | 20ХГСА | 20ХМ |
20ХН | 20ХН2М | 20ХН3А | 20ХН4ФА | 20ХНР |
20ХФ | 25Г | 25Х2ГНТА | 25Х2Н4МА | 25ХГМ |
25ХГНМТ | 25ХГСА | 25ХГТ | 27ХГР | 30Г |
30Г2 | 30Х | 30Х3МФ | 30ХГС | 30ХГСА |
30ХГСН2А | 30ХГТ | 30ХН2МА | 30ХН2МФА | 30ХН3А |
30ХН3М2ФА | 30ХРА | 33ХС | 34ХН1М | 34ХН1МА |
34ХН3М | 34ХН3МА | 35Г | 35Г2 | 35Х |
35ХГ2 | 35ХГН2 | 35ХГСА | 35ХГФ | 35ХН1М2ФА |
36Х2Н2МФА | 38Х2Н2МА | 38Х2Н3М | 38Х2НМ | 38Х2НМФ |
38Х2Ю | 38ХА | 38ХГМ | 38ХГН | 38ХГНМ |
38ХМ | 38ХМА | 38ХН3МА | 38ХН3МФА | 38ХС |
40Г | 40Г2 | 40ГР | 40Х | 40Х2Н2МА |
40ХГНМ | 40ХГТР | 40ХМФА | 40ХН | 40ХН2МА |
40ХС | 40ХСН2МА | 40ХФА | 45Г | 45Г2 |
45Х | 45ХН | 45ХН2МФА | 47ГТ | 50Г |
50Г2 | 50Х | 50ХН |
Сталь конструкционная низколегированная для сварных конструкций | ||||
06Г2СЮ | 06ХГСЮ | 08Г2С | 09Г2 | 09Г2Д |
09Г2С | 09Г2СД | 10Г2Б | 10Г2БД | 10Г2С1 |
10Г2С1Д | 10ГС2 | 10ГТ | 10ХГСН1Д | 10ХНДП |
10ХСНД | 12Г2Б | 12Г2СМФ | 12ГН2МФАЮ | 12ГС |
12ХГН2МФБАЮ | 14Г2 | 14Г2АФ | 14Г2АФД | 14ХГС |
15Г2АФД | 15Г2АФДпс | 15Г2СФ | 15Г2СФД | 15ГС |
15ГФ | 15ГФД | 15ХСНД | 16Г2АФ | 16Г2АФД |
16ГС | 16Д | 17Г1С | 17ГС | 18Г2АФ |
18Г2АФД | 18Г2АФДпс | 18Г2АФпс | 18Г2С | 1Х2М1 |
20ГС | 20ГС2 | 20Х2Г2СР | 20ХГ2Т | 20ХГ2Ц |
20ХГС2 | 22Х2Г2АЮ | 22Х2Г2Р | 23Х2Г2Т | 23Х2Г2Ц |
25Г2С | 25ГС | 25С2Р | 28С | 30ХС2 |
32Г2Рпс | 35ГС | 6Г2АФ | 80С |
Сталь конструкционная криогенная | ||||
03Х13Н9Д2ТМ | 03Х17Н14М3 | 03Х19Г10Н7М2 | 03Х20Н16АГ6 | 07Х21Г7АН5 |
0Н6 | 0Н6А | 0Н9 | 0Н9А | 10Х14Г14Н4Т |
12Х18Н10Т |
Сталь конструкционная подшипниковая | ||||
11Х18М-ШД | 8Х4В9Ф2-Ш | ШХ15 | ШХ15СГ | ШХ20СГ |
ШХ4 |
Сталь конструкционная рессорно-пружинная | ||||
50ХГ | 50ХГА | 50ХГФА | 50ХСА | 50ХФА |
51ХФА | 55С2 | 55С2А | 55С2ГФ | 55ХГР |
60Г | 60С2 | 60С2А | 60С2Г | 60С2Н2А |
60С2ХА | 60С2ХФА | 65 | 65Г | 65ГА |
65С2ВА | 68А | 68ГА | 70 | 70Г |
70С2ХА | 70С3А | 75 | 80 | 85 |
Сталь конструкционная высокопрочная высоколегированная | ||||
Н12К12М10ТЮ | Н12К12М7В7 | Н12К15М10 | Н12К16М12 | Н12К8М3Г2 |
Н12К8М4Г2 | Н13К15М10 | Н13К16М10 | Н15К9М5ТЮ | Н16К11М3Т2 |
Н16К15В9М2 | Н16К4М5Т2Ю | Н17К10М2В10Т | Н17К11М4Т2Ю | Н17К12М5Т |
Н18К12М3Т2 | Н18К12М4Т2 | Н18К14М5Т | Н18К3М4Т | Н18К4М7ТС |
Н18К7М5Т | Н18К8М3Т | Н18К8М5Т | Н18К9М5Т | Н18Ф6М3 |
Н18Ф6М6 | Н8К18М14 |
В общем объеме производства проката наибольшее количество металла приходится на долю конструкционных сталей.
Различные сооружения и конструкции во время своей службы воспринимают сложные внешние нагрузки (растягивающие, сжимающие, изгибающие, ударные, знакопеременные или их сочетания), подвергаются действию атмосферы и агрессивных сред (морская и речная вода, водные растворы солей, щелочей, кислот и пр.), испытывают колебания температуры окружающей среды в летние и зимние месяцы года.
В клепаных и особенно сварных конструкциях большого объема (цельносварные корпуса судов, резервуары, газопроводы и др.) при резких понижениях температуры в условиях конструктивно стесненной деформации возникают большие внутренние напряжения, которые, складываясь по знаку с напряжениями от внешних усилий, усложняют условия работы материала и при неудовлетворительном его качестве могут приводить к авариям.
Сложные и нередко весьма тяжелые условия службы механизмов и конструкций, особенно в северных районах, уменьшение расчетных сечений при создании современных сооружений, узлов машин и механизмов для снижения их массы и расхода металла и, одновременно необходимость обеспечения надежности, долговечности и безопасности их работы предъявляют высокие требования к стали как конструкционному материалу. В зависимости от условий применения и эксплуатации требования к конструкционной стали могут изменяться в том или ином направлении, но в целом можно выделить наиболее важные из них.
Конструкционная сталь должна обладать сочетанием высоких прочностных и пластических свойств. Из прочностных свойств основной конструкционной характеристикой является предел текучести (условный или физический) — величина, непосредственно входящая в расчетные формулы. Выбор этой характеристики в качестве основы при расчетах на прочность объясняется тем, что при более высоких напряжениях в конструкции возникают необратимые линейные изменения, что может привести к выходу ее из строя. Повышение предела текучести позволяет снижать расчетные сечения, а следовательно, и массу стальных конструкций или—при той же массе — выдерживать более высокие рабочие напряжения.
Важной служебной характеристикой является предел прочности; эта характеристика отражает способность стали сопротивляться разрушению. При изготовлении конструкций из высокопрочной стали предел прочности может быть также использован в качестве расчетной характеристики.
Распространено мнение, что чем меньше величина этого отношения, т. е. чем больше разница между пределом текучести и пределом прочности, тем выше надежность работы конструкции. Так, как показывает опыт эксплуатации конструкций, металл должен обладать способностью к местным, локальным пластическим деформациям для релаксаций пиков напряжений в районе различных концентраторов (отверстия, выточки, подрезы, вмятины, непровары, сварочные трещины и прочее), создающих объемно-напряженное состояние. Чем выше эта способность, тем в большей мере реализуется сопротивление металла возникновению и распространению трещин при местных перенапряжениях, т. е. в конечном итоге увеличивается надежность работы металла в конструкциях.
Наряду с характеристиками прочности и пластичности весьма важную роль для обеспечения надежности и работоспособности конструкций придают показателям, определяющим переход металла в хрупкое состояние под воздействием по крайней мере четырех факторов: температуры, наличия надреза (концентратора), скорости приложения нагрузки, степени объемности напряженного состояния.
В настоящее время проблема повышения сопротивления металла хрупким разрушениям становится одной из важнейших. Это обусловлено необходимостью обеспечить надежную работу конструкций и машин в суровых климатических условиях, например Сибири и Крайнего Севера. Кроме того, увеличение масштаба инженерных cооружений, применение крупных сварных узлов и конструкций, обладающих большой жесткостью и меньшей податливостью, чем клепаные конструкции, а также работа материала в условиях сочетания высоких напряжений и коррозионных сред создают условия, способствующие развитию хрупких разрушений.
Для оценки склонности стали к хрупкому разрушению широко используют метод ударных испытаний стандартных образцов с определением ударной вязкости и температуры перехода в хрупкое состояние. Распространенность этого вида испытаний обусловлена не только простотой изготовления образцов и простой методикой сериальных испытаний, но и тем, что применительно к целому ряду случаев наблюдаются статистически надежные связи между характеристиками ударной вязкости и поведением стали при эксплуатации.
Однако в большинстве случаев испытание стандартных образцов на ударный изгиб не дает полного представления о работе материалов в конструкции.
Поэтому пытаются найти более совершенные методы определения склонности стали к переходу в хрупкое состояние, которые более полно соответствовали бы реальным условиям работы металла в конструкциях.
При изготовлении металлоконструкций и специфичных видов прокатных изделий (например, железнодорожных рельсов), воспринимающих в процессе эксплуатации воздействие знакопеременных нагружений, важную роль придают повышению предела выносливости (усталости) как одному из факторов, определяющих продолжительность их службы. Предел выносливости увеличивается с возрастанием прочности, повышением чистоты металла по неметаллическим включениям, улучшением качества его поверхности. Особенно важным представляется повышение предела выносливости при наличии концентраторов напряжений.
Необходимым условием долговечности и надежности работы конструкций и сооружений является достаточно высокая коррозионная стойкость. Особенно важно повышение коррозионой стойкости для высокопрочных сталей вследствие уменьшения расчетных сечений элементов конструкции при использовании этих сталей. При меньших конструктивных сечениях коррозионные повреждения оказываются относительно более опасными, чем в более толстых сечениях из стали с пониженной прочностью.
Для борьбы с коррозией стали подвергают специальному легированию (хромом, никелем, медью, фосфором), тщательной и своевременной окраске, оцинкованию, фосфатированию. В последнее время предложено нанесение на поверхность металла хлорвиниловой пленки.
Наконец, конструкционная сталь должна обладать удовлетворительными технологическими свойствами. В первую очередь она должна соответствовать требованиям свариваемости с обеспечением одинаковой прочности основного металла и сварного соединения, иметь минимальную склонность к деформационному старению, без особых затруднений обрабатываться в горячем и холодном состоянии (прокатка, ковка, гибка, обработка на металлорежущих станках), а также должна быть относительно недорогой в производстве.